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Abstract-The mechanics of a single-lap joint subjected to tensile loading arc invcstigated. Thcor­
etical solutions, including the classic Goland and Reissner solution, are reviewed and examined in
detail. It is observed thaI. despite the considerable efforts of a large number of researchers over a
period of half a century, controversy and unresolved issues remain. Limitations related to theoretical
treatments are identified and suggested improvements proposed.

A two-dimensional geometrically nonlinear finite element analysis is performed to provide
comparisons with the theoretical analyses. The discrepancies and controversies in the thcories are
resolved through detailed studies of the mechanics and validated through numerical analyses. and
through a clarification of the definition of long and short joints. Modifications and corrections to
thc theories arc suggested for practie,d application to lap joint analysis and design.

INTRODUCTION

The single-lap joint is one of the most commonly used bonding configurations. Due to its
combined characteristics of simplicity and efficiency, the single-lap joint has been adopted
as a standard mechanical test method for determining the shear strength (ASTM 01002­
72) and modulus (ASTM 03983-81) properties of adhesives. In addition, it has also gained
the attention of aerospace, automotive, as well as the wood and plastics industries for
structural joint evaluation.

Whether for determining the material properties of adhesives or for structural bonding
applications, the single-lap joint must be analysed in detail to provide an understanding of
the stress distributions not only in the adhesive layer, but also in the joint adherends, under
mechanical loading and under the relevant environmental conditions (such as temperature,
moisture, etc.). The stress analysis of the single-lap joint has undergone continuous devel­
opment and refinement for more than five decades. The earliest analysis developed by
Volkersen (1938) was a simple shear lag model based on the assumptions of a perfectly
rigid adherend with only shear deformation in the adhesive layer. Later, Goland and
Reissner (1944) developed a cylindrically bent-plate analysis in which the major steps were:
to introduce the effects ofajoint edge moment, resulting from the eccentricity of the loading
path, on the stress distributions in the adherends and the adhesive; to formulate the adhesive
stress distributions in terms of the geometrical and material parameters of the adherend and
adhesive; to demonstrate the critical role of the transverse normal (peel) stress component at
(or near) the free end of the adhesive layer. Hart-Smith (1973) proposed an improved
model which removes the lumped overlap (assumed in the Goland and Reissner analysis)
restriction by treating the adherends as beams on an elastic foundation, and provided stress
solutions for linear elastic and elastic~plasticadhesives. Recently, Oplinger (1991) developed
a layered beam analysis, which included treatment of large deflection of the joint overlap.

Several researchers have proposed two-dimensional analytical solutions, which were
focused on the joint overlap, to ensure that the stress-free boundary conditions would be
satisfied at the free end. For example, Allman (1977) used a minimum strain energy, with
given bending, stretching and shearing at the end of the overlap and assuming that the
longitudinal normal stress was zero, the shear stress constant and transverse normal stress
linearly distributed across the thickness of the adhesive. Chen and Cheng (1983) employed
the variational principle of complementary energy with similar boundary conditions and
assumptions to those of Allman.
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The finite element method has been used by Wooley and Carver (1971) who conducted
a geometrically linear analysis and performed extensive parametric studies. Adams and
Peppiatt (1974), and Crocombe and Adams (1981) performed two-dimensional linear
finite element analyses of the single-lap joint with a spew fillet. Harris and Adams (1984)
performed a nonlinear finite element stress analysis focused on the prediction of the strength
for a single-lap joint with a spew fillet, with linear elastic and elastic-plastic material
properties of the adhesives.

The critical feature of the single-lap joint is the eccentric loading path, which results
in large deflections of the outer adherend and the overlap, and the joint edge moment (M,,)
at the end of the overlap. Goland and Reissner (1944) showed that M" plays the dominant
role in the development of the stress distributions in both the adherends and the adhesive
layers. The magnitude of M o depends on the geometry, material properties and the applied
load, and cannot be predicted from one-dimensional beam theory without including large
deflection effects or from two-dimensional elasticity without including geometric nonlin­
earity. The complexity arising from the geometric nonlinearity has been eliminated by
applying M o , the edge shear force (V,,) and the stretching load (T) as force boundary
conditions (see Fig. 1) in two-dimensional linear stress analyses of the joint overlap. For
example, Ojalvo and Eidinoff (\978) used Hart-Smith's M" formulation, while Chen and
Cheng (1983), and Crocombe and Adams (1981) adopted Goland and Reissner's formu­
lation. Thus an accurate evaluation of M" is essential.

Since the joint edge moment is such a crucial parameter, it is instructive to compare
the first formulation postulated by Goland and Reissner (1944) to the modified treatment
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Fig. l. Schematic representation of a single-lap joint: (a) geometric and material parameters;
(b) free-body diagrams under loading.
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Fig. 2. The normalized edge moment k vs ~c for the original Goland and Reissner (GR) and Hart­
Smith (HS) analyses for '1 = O.

of Hart-Smith (1973). Both approaches lead to the rather different values of M" shown in
Fig. 2. The above formulations are widely cited by other researchers (Adams, Cheng,
Allman, Ojalvo, Oplinger, etc.). However, there are conflicts, and the accuracy of these
formulations is still in question. The objectives of the present study are to evaluate the
theoretical models, to clarify the limitations of the models, to resolve the apparent conflicts,
and to present reliable stress distributions in the adhesive layer.

THEORETICAL FORMULATIONS

The geometrical and material parameters of the single-lap joint are shown in Fig. I (a),
in which IXn represents a force-eccentricity angle, I the length of the outer adherend, 2c the
length of the overlap, t the thickness of the adherend, and 11 the thickness of the adhesive layer.
The elastic modulus and Poisson's ratio are E and v, respectively, for the adherends, and
E, and v, for the adhesive. When the single-lap joint is subjected to a stretching load, T',
the free-body diagrams shown in Fig. I (b) illustrate the presence of the joint edge moment,
M,n the joint edge shear force, Vo, and the longitudinal force, T per unit width, at the ends
of the overlap. Since IXn « I (usually IXn < 0.1), the relationship between T and T' can be
written as:

T = T' cos IXn ~ T' = pt, (I)

where p is an applied average stress. The force system acting on the overlap portion in Fig.
I(b), must satisfy the self-equilibrium condition,

(2)

Goland and Reissner (1944)
This classic analysis of the single-lap joint can be divided into three parts: part I, the

determination of the edge loads; part II, the stress analysis of the overlap for a relatively
inflexible adhesive; part III, the stress analysis of the overlap for a relatively flexible
adhesive. In part I, it was assumed that the adhesive layer was thin compared to the
thickness of the adherend (I'{ « t) so that the presence of the adhesive layer was neglected,
and I'{ and E, are eliminated from the formulation. The analyses took into account the
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effects of large deflections for the outer adherend and the joint overlap. Continuity of the
deflections and the rotation angles at the end of the overlap were imposed as boundary
conditions, and the bending stiffness of the overlap was calculated by assuming that the
upper and lower adherends were lumped together. By applying the approximations

to the isotropic balanced single-lap joint, the edge moment, M" can be determined as

Tt kpt"
M = k = ----

" 2 2
and

(3)

U = ~ = JI2(1~?)_T and
I Et 3

~u, = - ..- _..
- 2)2

k = cosh (UlC)

cosh (UlC) +2;-2 sinh (UlC)

where

I
-_._--~.~""~-------.--. --- --

I+2)2 tanh (U2C)

I

(
~c )I +2)2 tanh - ---

2)2

(4)

Thus, the edge moment, M o (or the normalized edge moment, k) depends only on E, C, t
and T.

Goland and Reissner then separated the joints into two cases: (a) relatively inflexible
adhesive (101]1! ~ EelE); (b) relatively flexible adhesive (EciE ~ 1]llOt). A stress analysis
of the joint with an inflexible adhesive was addressed in part II, in which the overall overlap
was treated as a single deformed body with the same material properties as the adherend.
An approximate solution was obtained by solving the elastic boundary-value problem with
given M" and T at the end of the overlap, and neglecting V". The stress distributions for
this joint with the 90' corner (i.e. no spew fillet) depend upon parameters M" (or k), T, E
and t. Part III addresses the stress analysis of the joint with a flexible adhesive. Due to the
nature of this joint, the assumption is made that the deformations of adherend arise only
from the longitudinal stress, (Jx, since the transverse normal strain and shear strain in the
adherends are relatively small compared to those in the adhesive. A cylindrically bent-plate
formulation was developed with values of M,,, T and V" from part I. However, large
deflections of the overlap were ignored in part Ill. The adhesive shear and transverse normal
stresses (T" and (Ja) were assumed constant through the thickness of the relatively thin
adhesive layer. The closed-form solutions are given as adhesive shear stress (T,,):

where

T"

p

I t

8 cl (pc J:') ]cosh ---

fi
t

C
(I +3k) . ~CC +3(1-k)

smh --
t

(5)

adhesive normal stress «(J,,) :

~' = ~~ ±[(R 2 ). 2; + }.k' cosh Acos;.) cosh (;,~) cos (},~)

+ ( R I}C~: + ;,k' sinh }c sin A) sinh (;, ~) sin (;,nJ (6)
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It is important to note that the expression for 0'0 [eqn (6)] is that developed by Goland
and Reissner. The expression is correct even though Goland and Reissner were inconsistent
with the sign of Vil in the boundary conditions of their derivation [see eqns (38) and (48)
of the Goland and Reissner paper]. The effect of the inconsistency on a" was removed by
a second inconsistency in the development of their analysis from eqns (48) to (53). Sneddon
(1961) pointed out the inconsistency in Goland and Reissner's formulation of the boundary
conditions and removed it [but did not correct eqn (48) in the Goland and Reissner paper].
Sneddon also removed the second inconsistency in the derivation but used the original eqn
(48), and obtained an expression similar to eqn (6) but with negative signs for the k' terms
(the terms involving the edge shear V,,). Subsequently many researchers have used the
Sneddon expression. Should any further evidence be needed that eqn (6) is correct, in
addition to the fundamental mechanics, appeal might also be made to the fact that eqn (6)
provides a more reasonable model for the cases with a large edge shear, and that it agrees
with a two-dimensional finite element analysis more closely than the Sneddon correction.

Hart-Smith (1973)
Hart-Smith presented a detailed analysis which, essentially, combines Goland and

Reissner's parts J and III, and takes into account the individual deformations of the upper
and lower adherends in the overlap, which is, of course, more realistic than the adoption
of the lumped overlap. The Hart-Smith analysis involves the determination of the edge
moment, M", and adhesive shear and transverse normal stresses (t" and ail)' simultaneously.
The Mil obtained from this approach is a function of E, c, t, I, T, Ee and IJ (recall that E,
and IJ are not included in the Goland and Reissner's M o formulation). By neglecting small
terms and applying the approximation of sinh u,1 ~ cosh ull ~ (eU")/2, the solution for
M" becomes dependent only on E, c, t, IJ and T (or 17 and ~c) as:

(7)

This analysis accounts for the effect of the large deflection in the outer adherend, but
disregards the large deflection effect in the overlap.

Oplinger (1991)
Oplinger proposed an even more detailed analysis than Hart-Smith's to account for the

large overlap deflection effect Based on Oplinger's formulation (Appendix B and Oplinger
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1991), the normalized edge moment is

(8)

where

Vj, V2 =a±b, a= [4(1+ ~~)+~~l b=

C
t
=Kj

Kl

!
--~"._~-"-

120 v2)T
Til 1 = tanh (I -----ei-3 - - ) = tanh (~/)

Till! = tanh (11!~)

Th22 = tanh (112~)

General comments on the above three treatments
In part I of the Goland and Reissner analysis, the calculation of the edge moment, Mo ,

took into account the influence of the large deflection of the overlap (called the geometrically
nonlinear effect), while the stress analysis of the overlap, in parts II and HI, ignored this
effect. Thus, the M" expression is valid for short and long overlaps, but the stress analysis
of the overlap is reliable only for a short overlap, unless the stress transfer from the upper
adherend to the lower adherend is insensitive to the geometrically nonlinear effect. Since
the assumption of the lumped overlap in Goland and Reissner's model may not be realistic,
Hart-Smith removed this limitation by considering the individual deformations of the upper
and lower adherends for the overlap. The Hart-Smith model is, however, still limited to the
short overlap with a relatively thin flexible adhesive, as a result of neglecting the large
deflection effect in the overlap. The more complete and complex model postulated by
Oplinger aimed to improve the Hart-Smith model with the inclusion of the large deflection
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effect in the overlap. However, Oplinger's model is still limited to an overlap with a relatively
thin and flexible adhesive.

EVALUATION OF THEORETICAL TREATMENTS

Modified Goland and Reissner's solution
The original equation for the normalized edge moment k from Goland and Reissner's

analysis [eqn (4)] for the isotropic balanced single-lap joint depends only on ~e, due to the
elimination of the parameter I through the approximations of sinh (ull) ~ cosh (ul/) ~
(e" II )/2. A modification to part I of Goland and Reissner's analysis, the determination of
k, is proposed here to include the presence of the adhesive layer and the length of outer
adherend (i.e. parameters En '1 and I). The detailed derivations are presented in
Appendix A in which eqn (A.8) is the general solution, which can be recovered as eqn (4),
the original Goland and Reissner solution, if '1 = 0 and the approximations for ull is
included. To investigate the effect of the outer adherend length on k for the balanced single­
lap with the zero thickness of adhesive (i.e. '1 = 0 and ullu2 = 2)2), eqn (A.8) becomes:

k = ... ---:-l_~~---

1+ 2)2 tanh (;J2) coth (~l)
(9)

Equation (9) is plotted in Fig. 3 for lie = 0.1 '" 100, in which it is apparent that there is
not a single k-~e curve, but a family of curves gradually converging as lie> 100, and k = I
as ~e approaches O. The k-~e curves for lie < I are significantly different to those when
lie = 5", 100. Furthermore, all k-~e curves converge asymptotically to k = 0.26 for large
values of ~e.

Definition ofshort and long joints
Since Goland and Reissner's analysis neglected large overlap deflection effect in part

III, it is interesting to determine how such nonlinear behavior affects the edge moment, and
under what conditions the nonlinear effects are negligible. If the overlap is relatively long
compared to the thickness of the adherend, the large deflection of the overlap should be
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Fig. 3. The normalized edge moment k vs ~e for the original Goland and Reissner analysis with
variation of lie.
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nonlinear overlap
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Fig. 4. k-f,c curve comparison of overlap geometrically linear and nonlinear models based on Goland
and Reissner's theory.

included in the analysis. If the overlap is not long enough to manifest this large deflection
effect before it fails, the effect can be ignored in the analysis. The former is defined as the
long joint and the latter as the short joint. It is now proposed to address the issue of
distinguishing these cases.

The k formulation, based on part I of Goland and Reissner, is developed in Tsai and
Morton (1992a) neglecting the large overlap deflection effect. The new equation for k is
compared to the original eqn (4) in the plot of k vs ~c in Fig. 4. Initially the k-~c curves
are superimposed for the linear and nonlinear overlap deflections in the range I/e = 5 ~ 100,
while they diverge beyond ~e = I. Thus the linear formulation of the overlap is still valid
for ~e :;;; I. In other words, provided that ~c :;;; I, there are no significant effects of the
overlap geometric nonlinearity on the joint edge moment. Based on this observation, short
overlaps can be defined simply as ~e:;;; I (or about cit:;;; 0.3IjE/p, taking \' = 0.34), and
the long overlap when ~c ~ I. When p (applied average stress) reaches (J" (the strength of
the adherend), which is approximately the maximum applied stress or, in most cases, less
than that, due to the presence of the bending moment, the corresponding maximum value
of ~c can be determined. Thus the geometric and material parameters of the short joint can
be defined as :

c JE:;;;0.31 .
t (1"

(10)

From eqn (10), balanced single-lap joints for a range of materials can be classified as
short and long joints in terms of the value of c/ t, as depicted in Fig. 5.

Hart-Smith's complete solution
Hart-Smith identified a limitation of part I of Goland and Reissner's treatment, the

assumption of the lumped overlap, and suggested an improved solution for k by considering
the presence of the adhesive layer. His solution is, however, limited to the geometrically
linear deformation of the overlap. Instead of the simplified formulation of k [eqn (7)], which
is only a function of IJ and ~c, the complete procedure and formulations are reviewed and
described in Tsai and Morton (1992a) in order to incorporate parameters I and E,_ into the
calculation of k. The simultaneous algebraic equations were employed to calculate k,
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Fig. 5. Definition of long and short overlap joints.

compared to the simple solution, and illustrated graphically in Fig. 6 for the case of
tTlt = 0.078 with several values of lie and EeIE. It is evident that, in Hart-Smith's analysis,
changes in lie do affect the k value for small values of ~c (note that k approaches 1.078
rather than I, due to the thickness effect of the adhesive layer). It is also apparent in the
complete solution that the parameter EelE can influence substantially the k-~c behavior
within the region of large values of ~e, not apparent in the simplified solution.

NUMERICAL ANALYSES

The problem of the single-lap joint has geometrically nonlinear features resulting from
the off-axis applied force (eccentricity of loading path) which cause large rotations of the
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Fig. 6. k-~c curves obtained from Hart-Smith's model with complete solutions (with E,/E effect)
and simplified solution, eqn (7) (without E,/Eeffect) for I//t 0.Q78 and Ije = 5 - 100.
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overlap. The off-axis loading is mainly a result of the discontinuity in the neutral axes
between the outer adherend and the overlap. The transverse deflection due to applied loads
is coupled with the loading, so that this highly geometrically nonlinear problem cannot be
solved through the geometrically linear approach. In this study. a geometrically nonlinear.
two-dimensional plane-strain finite element analysis with material linearity is used to
determine the edge moment, analyse the stress state of the adhesive layer and assess the
closed-form solutions.

A two-dimensional plane-strain finite element analysis with a geometric nonlinearity.
from Zienkiewicz (1977), with a nonlinear strain~isplacementrelationship (Green's strain
tensor), was performed. This strain~isplacement relationship, in the Cartesian system of
x and y coordinates with corresponding displacements II and 1', is:

(';.'11 + I [(:.'11)2 + ({';.'r)2J
Dx 2 ex ('X

Dr I [("ill)" (Dr)"J
Dy + 2 Dy + (~y

I.Y!
( I I)

The numerical calculations in this study were performed using ABAQUS, a commercial
finite element code, which employ's Newton's method as the nonlinear equation solver.

The schematic representation of the specimen geometry (Fig. 7), contains the geometric
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Fig. 7. Specimen geometry and detailed mesh used in the present tinite element analysis.
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and material parameters, the boundary conditions, as well as the detailed finite element
mesh. The boundary conditions applied here consist of a hinge at one side end of the
specimen and a roller at the other, located in the neutral axes of the outer adherends, which
allow the resultant force to act through the center point of the overlap, and thus generate
the antisymmetric loading and geometry conditions. The finite element mesh contains 2
constant-strain elements through the thickness of the adhesive layer and 6 elements through
the thickness of the adherend. Since only 2 constant-strain elements were used, the values
of the adhesive stresses along the center line of the adhesive layer are close to the average
of those over the thickness of the adhesive layer.

Numerical investigations for the stress analyses of a typical short joint, a typical long
joint, and joints ranging from the former to the latter, are presented. For all cases, the
parameters E, v, t and Ve are E = 70 GPa, v = 0.34, t = 1.6 mm and Vc = 0.4, respectively,
and all = 500 MPa. For the short joint analyses, llc = 10, cit = 4, 'lIt = 0, 0.078 and
0.158, and EelE = 0.08, 0.04 and 0.008 (which represent relatively inflexible, intermediate
flexibility, and flexible adhesive layers, respectively, for 'lIt = 0.078). For the long joint
case, the relevant parameters were taken as llc = 1.25 and 5, cit = 32, 'lIt = 0.078, and
EciE = 0.04 (intermediate) and 0.008 (flexible). For the joints ranging from the short to
long, the values of the parameters were llc = 5, 'lIt = 0.078 (with intermediate flexibility
adhesive), and EelE = 0.04, and cit ranging from 4 to 32.

Typical short joint
The transverse deflections (normalized by the adherend thickness t) for various loads

(T) are plotted for 'lIt = 0 (no adhesive layer) and compared to the Goland and Reissner
(GR) solutions in Fig. 8. In the numerical calculation, it should be noted that the maximum
variation of calculated deflections across the thickness of the adherend is less than I %, for
the entire loading history. The results in Fig. 8 indicate that the general trends of the
deflection curves for the numerical and analytical solutions are in good agreement with
each other, and show almost straight line behavior in the joint overlap (a rigid-body
rotation) during the entire loading, even near the maximum load. The large slope (or rotation
angle) near the junction of the joint overlap and outer adherend (point A in Fig. 8), leads
to the large variation in deflection with a small change of xii. For example, the deflection
at the end of overlap has 10% difference between both solutions close to failure load
(T = 800 N mm - I).

The numerically determined transverse deflection data can be used to obtain the edge
moment (or k) as:

M" = T(iXnl-(deflection)\~/) (12)
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Fig. 8. Comparison of the transverse deflections along the longitudinal direction between nonlinear
finite element method (NFEM) and Goland and Reissner (GR) for the short joint with TIlt = o.
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Fig. 9. k-~c curves obtained from nonlinear finite element method (NFEM) for the short Joint with
an intermediate flexibility adhesive and II/t = 0 - 0.156.

where

t+1]
:x =

II 2(1+d'

Equation (12) follows from eqn (A.I) with XI = t. If eqn (12) were not used in the
calculation of the edge moment but the longitudinal normal stress (a\.) distribution data

Ii. ~2Mo
T t
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0.4 ----1')11=0.078 f1e~ible
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o

Fig. 10. k-~c curves obtained from nonlinear finite element method (NFEM) for the short joint
with various material properties and thicknesses of the adhesives.
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were used, inaccurate results could be obtained since these stress distributions are not
perfectly linear, especially close to the interface. The k-ec curves for the short joint were
obtained for a variety of 17lt and EjE, and presented in Figs 9 and 10, respectively. The
calculated stress distributions along the center of the adhesive layer are shown in Fig. II
for tilt = 0.078 and E,IE = 0.008 (a relative flexible adhesive layer) for several load cases.

Typical long joint
Transverse defections for the typical long joint are shown in Fig. 12(a) for lie = 5,

cit = 32, 17lt = 0.078, and EclE = 0.04, under various loads. The results of the numerical
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intermediate flexibility adhesive and 1"/11 0.078.

analysis indicate that the deformations in the low loading state have features similar to
those of the short joint, but with obvious differences, especially near and along the overlap,
at high load levels. The detailed comparisons of the deflection of the overlap for the
numerical and Ooland and Reissner's solutions are presented in Fig. 12(b). Both results
show the similar deflected shape, but the differences in the deflections become significant in
the edge moment calculations.

The k·-~e curves determined from the nonlinear finite element method (NFEM) and
eqn (12) are shown in Fig. 13 for long joints with cit = 32, ~/t = 0.078, EclE = 0.04, and
lie = 1.25 and 5, and in Fig. 14 for lie = 5 and EclE = 0.04 (intermediate flexibility) and
0.008 (flexible). In Fig. 13 the same effects of the values of lie on the k--~c curves as for
Ooland and Reissner's model in Fig. 3 are observed. The corresponding adhesive stress
distributions are shown in Fig. 15 for various applied loads.
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Fig. 13. k-~e curves determined from nonlinear finite element method (NFEM) for long joints with

l/e = 5 and 1.25, and an intermediate flexibility adhesive and 'I/t 0.078.
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Fig. 14. k·-~e curves determined from nonlinear finite element method (NFEM) for the long joint
with an intermediate flexibility and flexible adhesives, and with rt/t 0.078.

RESULTS AND DISCUSSION

There are two key issues to be addressed: the determination of the edge moments (i.e.
k-~c curves) and the adhesive stress distributions. In order to address the former, the results
obtained from the nonlinear finite element analysis are discussed in detail and compared to
the closed-form solutions of Goland and Reissner, Hart-Smith and Oplinger. For the latter,
the adhesive stress distributions determined from the nonlinear finite element analysis with
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a relatively fine mesh are correlated with the Goland and Reissner solutions for the short
and long joints so as to provide a global indication of the load transfer from the one
adherend to the other through the adhesive layer.

k-~c curves
For the short joint, the numerical results shown in Figs 9 and 10 represent the variations

of k-~c (or Mo-~c) curves with changes in trlt and EcIE, individually. It is clear, from Fig.
9, that the k-~c curves shift with the variation oftrlt from 0 to 0.156 (with an approximate
scale factor of I + trl!). Also. it is remarked that the convex nature of these curves. for low
values of ~c (0 ~ (C ~ 0.15). is attributed to the I/e effect (in this case. Ie ~~ 10). and these
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curves are valid over the entire loading history until adherend failure, for this specific
geometry and adherend material. The results shown in Fig. 10 indicate that the k-~c curves
for this short joint are not sensitive to the variation of EelE ranging from flexible to inflexible
adhesives, especially for ~c values less than 0.8. Even at the maximum value of ~c (~c = I),
maximum variation of k due to EelE effect is still less than 6%.

The comparisons of the numerical short joint and theoretical results in the form of k­
(C curves are provided in Fig. 16. Figure 16(a) contains a detailed comparison with the
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Fig. 16. Comparisons of k-~~ curves obtained from nonlinear finite element method (NFEM) and
(a) modIfied Goland and Relssner (GR), (b) Hart-Smith (HS), (c) Oplinger (OP) models for the

short joint with an intermediate flexibility adhesive and Yilt = 0 - O. 156.
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modified Goland and Reissner solution which incorporates the fie and the adhesive thickness
effects. It is shown that for ee ::::; 0.5 the k-ee curves for a variety of 11lt are in reasonable
agreement, while for ee ~ 0.5 the differences between both results are somewhat more than
5% (for ee = 1,14% difference at 11lt = 0.157, and 8% difference at I1lt 0). Moreover,.
Fig. 16(b) contains a comparison of the numerical results and the Hart-Smith complete
solution which includes the lie effect. It is clear that the k-ee curves obtained by these two
approaches are very similar for various rtll (i.e. maximum difference of k values for these
two methods are less than 4%). Thus, the Hart-Smith model does represent an improvement
on the Goland and Reissner solution for the short joint by the inclusion of the individual
deformations of the upper and lower adherends in the overlap in the analysis. Finally.
comparisons between the numerical and Oplinger analyses are shown in Fig. 16(c) in which
it is apparent that, for the short joint, Oplinger's k values are also sensitive to the variation
of 1111 as are the numerical results, but the agreement of the Oplinger model with the
numerical results is not as good as that for the Hart-Smith model.

The nonlinear finite element results for the long joint are shown in Fig. 17 and compared
to various theoretical values. The results in Fig. 17(a) indicate that the numerical solution
for the joint with a moderately thin adhesive layer (rtlt = 0.078) is insensitive to EclE for
~c < 2, but shows considerable sensitivity to EriE as ~c ~ 2, especially for large values of
~c (for example, k is about 15% different for ec = 7). When compared to the Goland and
Reissner solution, the correlation between the numerical and original Goland and Reissner
solutions (rtlt = 0) is poor at the beginning and near the end ofloading. However, agreement
is significantly improved in the modified Goland and Reissner solution (111t = 0.078) for
~c < 2. Furthermore, the modified Goland and Reissner analysis appears insensitive to
E,';E, and more conservative, in predicting the edge moment. Another comparison, shown
in Fig. 17(b) for the numerical and Hart-Smith solutions, indicates that unlike Goland and
Reissner's solution, the Hart-Smith model does show a sensitivity to E,IE similar to the
numerical analysis, although there exists a considerable difference in the predicted value of
k. This large difference is thought to be caused by neglecting the large overlap deflection



Solutions to the single-lap joint

(a)

0.9

2555

0.8

0.7

0.6

0.5
k = 2M.

T t
0.4

0.3

0.2

0.1

Mod. Gil. T)/t=O.078 (nexible or intermed.)........ L GR 11/t=O

..:::.::::.:.... :=;·..:b·.·..:=~...:=.:~-.

(nexible)

o
o

(b)

0.9

0.8

0.7

0.6

0.5
k =2Mo

Tt
0.4

0.3

0.2

0.1

o
o

2

2

4

4

~c

6

6

8

8

10

10

Fig. 17. Comparisons of k--~c curves obtained from nonlinear finite element method (NFEM) and
(a) modified Goland and Reissner (GR), (b) Hart-Smith (BS), (c) Oplinger (OP) models for the

long joint with an intermediate flexibility adhesive and flexible adhesives, and Yilt = 0.078.

effects in Hart-Smith's analysis, which is a significant factor in long joints. Finally, the
numerical results compared to Oplinger's results are illustrated in Fig. 17(c). It is clear that
Oplinger's prediction shows the same E,.jE sensitivity and general trends as the numerical­
prediction, and agrees with the numerical results more closely than the modified Goland
and Reissner and Hart-Smith predictions.
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The k-~c curves for short and long joints, determined from the numerical analysis, are
not coincident, while theoretical models give a single curve for different lengths of the
overlap but different curves for the various models. It is interesting to understand how the
k-~c curves evolve from the short joint to long joint. The k-~c curves calculated using finite
element analyses are shown in Fig. 18 for several overlap lengths, and compared to the
theoretical models. Note that all the joints were taken to be loaded until adherend failure.
It is clear that the k-~c curves branch out from a single point at the start ofloading, for all
overlap lengths (or cit), but end at different values of ~c. The short joint k-~c curves can
be described' closely using the Hart-Smith model, whereas the Oplinger model can give
better predictions of the long joint behavior. It must also be emphasized that, if geometrically
linear analyses were carried out in this case, k would be about 0.9, rather than 1, for these
specimens. In order to examine the overlap deformation, the deflection shapes were drawn
in Fig. 19 for different overlap lengths which are subjected to the same, near adherend
failure load. The results indicate that the overlap deflections remain linear for cit = 4,
slightly nonlinear for cit = 8, and extremely nonlinear for cit = 32, before adherend failure.
Thus, for the long overlap joint, the large deflection effect is an important factor in
determining the edge moment and cannot be ignored, while for the short overlap joint this
effect can be neglected.

Adhesive stress distributions
The resulting normalized stress distributions in the adhesive for the short joint with a

flexible adhesive under the various loads, shown in Fig. II, consist of individual stress
component (ax, ay and Txy ) distributions along the center of the adhesive layer for a half of
the overlap. The maximum load (stress) applied is the adherend failure load (stress),
T = 800 N mm - I (p = 500 MPa). From these stress distributions, it is observed that there
exists a region of stress uncertainty, noted as the shaded area, near the free end, due to
violation of stress-free conditions (i.e. ax = 0 and Txy = 0). Despite the region of stress
uncertainty, the location of maximum stress is found to occur at or near the end of the
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Fig. 18. Comparisons of k-~c curves determined from nonlinear finite element method (NFEM),
modified Goland and Reissner (GR), Hart-Smith (HS), and Oplinger (OP) models for the joints

with variation of cit and values of lie = 5, r,lt = 0.078, and EJE = 0.04 (intermediate).

overlap, and the normalized stresses (ux/p, uy/p or tXY/p) decrease with increasing applied
loads. The decreasing normalized stress is caused primarily by the reducing edge moment
which results from the large deflection effect. The magnitudes of U x near the end of the
overlap are comparable to those of uy and txY' so that the role of Ux cannot be neglected,
especially for accurately determining the uyand t xy in this region. Unfortunately, most of
the available theoretical solutions (except Goland and Reissner's part II) do not account
for the contribution of UX' That is, these theoretical analyses feature one-dimensional (or
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0

-0.2

-0.3

-0.4
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Fig. 19. Transverse deflections along the overlap for the joints with variation of cit, with the values
of lie = 5, r,lt = 0.078, and E,IE 0.04 (intermediate), and under the same near failure load

(T = 600 N mm- 1
).
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simplified two-dimensional by assuming ax = 0 in adhesive layer) rather than full two~

dimensional analyses. For the ay distribution, ay acts almost over the entire adhesive layer
(about 4/ from the free end) and large tensile (Jy occurs near (or at) the end of the free end.
For the 'xy distributions, it is apparent that the distributions have a tendency to become
uniform with increasing the applied loads. The adhesive stress distributions are compared
to those from Goland and Reissner's part nI, with the corresponding values of k [and k'
determined from eqn (2)], in Figs 20(a, b) for (Jy and tty, respectively. It is clear that the
general trends of the (Jy and 'xy distributions are in reasonable agreement for both results.
In terms of maximum stress values, the differences in (Jx or 'xy calculated from these two
approaches are within 10%. Also, the stress concentration (ay)max/Tavg is about 1.7, while
(Tu)max/'avg is about 1.6 for a flexible adhesive under k = 0.47 (near the adherend failure
load). Note that Tavg = T12e. It seems likely that the joint adhesive failure is dominated by
transverse normal stress, a.-.

The adhesive stress distributions in Fig. 15 are for the case of the typical long joint
under the various loads. These distributions indicate that. like the short joint, there also
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exists a region of stress uncertainty and the maximum normalized stresses decrease in value
as the applied load increases. It is specially noteworthy that the presence of (Jy is confined
to the region of xle = 0 to 0.125 (about a distance of 4t from both free ends), and beyond
this, the r xy is almost constant and small. In other words, the zone of significant (Jy is
independent of the length of the overlap, and the maximum value of r xy is not significantly
reduced by decreasing r avg ' For example, increasing the length of the overlap from 8t to 64t
(from short to long overlaps) represents a decrease of r avg from TI8t to TI64t for the same
applied load, T, but the maximum (Jy decreases only from 0.42 (Jylp to 0.24 and the maximum
rxy from 0.25 rxylp to 0.17, for the case of T = ION mm - I. Furthermore, unlike the short
joint, the stress concentration «(Jy)max/ravg is about 5.8 and (rxy)max/ravg is about 7, for
k = 0.187 (near the adherend failure load). The comparison of the adhesive stress dis­
tributions with Goland and Reissner's solution for the low and high applied loads is shown
in Fig. 21. It is clear that Goland and Reissner's predictions (part III) are reasonably
accurate for the long joint, even though their model (part In) does not include the large
deflection effects (or geometric nonlinearity) of the overlap.
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The requirement of the stress-free condition at the free ends led Allman (1977), Ojalvo
and Eidinoff (1978), Chen and Cheng (1983), and others, to aim at improving Goland and
Reissner's part III by means of two-dimensional analyses with the assumption ofa constant
adhesive shear stress (T xy ) and a linear transverse normal stress «()y)' or a constant rTy and
a linear Txy . Likewise, this requirement guided the present finite element analysis with
reasonably fine mesh and still produced the region of uncertainty near the free end. It is
well known [Williams (1952), Bogy (1971), Bogy and Wang (1971), Hein and Erdogan
(1971), Wang and Choi(l982a, b), Tsai and Morton (1992b)] that the stress singularity,
which is the unbounded stress state, can be present at the corner (or interface corner) for
similar (or dissimilar) materials for linear elastic behavior, and that the strength of the
singularity depends on parameters such as the wedge angle and the mismatch of material
properties. The bonded joint, of course, contains corners or interface corners which have
high stress raisers and which may initiate the failure during loading. A more detailed and
localized finite clement analysis for this single-lap joint problem has been performed (Tsai
and Morton, 1993), which indicates that the strongest stress raiser appears at the interface
corners between the loaded adherend and adhesive layer, but not at the other interface
corner between the nonloaded adherend and adhesive layer, which results from the very
low (or zero) load transfer, although both corners have similar strength of singularity.
Therefore, the maximum stresses calculated from the different approaches mentioned above
are different and arbitrary, so that the application of maximum stress data to the engineering
design of a single-lap joint should be made with caution. Nevertheless, it is true that the
validity and practical application of the singular solutions based on linear elastic continuum
mechanics are limited to the scale of a local region, and uniform and elastic material
behavior, as well as ideal geometry.

CONCLUSIONS

The single-lap joint has been analysed using the geometrically nonlinear finite element
method and the results compared to those of the available theoretical solutions. The
distinction between the short and long joints has been defined on the basis of the influence
of the large overlap deflection on the edge moment. Representative short and long joints
were analysed in detail. It is shown that for the short joint, k-~c curves are sensitive to the
adhesive thickness, but not to the adhesive material property, while these curves are sensitive
to both factors for the long joint. Moreover, it has been demonstrated that, in contrast to

most theoretical models, the k-~c curves depend on the parameters such as length of the
outer adherend (I), adhesive material properties (Ec )' thickness of the adhesive (11) and even
the length of the overlap (2c). Some modifications and corrections to the theoretical
solutions have been proposed and suggested for the practical application. The controversy
concerning the validity of the theoretical solutions has been resolved and clarified through
the definition of the long and short joints and comparisons of numerical and theoretical
results. For determination of the edge moment, Hart-Smith's model is more feasible and
reasonable for the short single-lap joint with a varied thickness of the adhesive layer than
the modified Goland and Reissner and Oplinger models, whereas the Oplinger model gives
a more reasonable approximation for the long single-lap joint with variations of thickness
and material properties in the adhesive layer. As far as the adhesive stress distributions are
concerned, the original Goland and Reissner part III solution, which has been much
misquoted and misused, has been demonstrated to be accurate enough to predict the
adhesive stress distributions in the global sense for the short and long joint. regardless of
its lack of satisfaction of the stress-free conditions in the free end and its neglecting of the
large deflection effect in the overlap.
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APPENDICES

In order to provide for convenient comparison with the original treatments. the original notation and
definitions are used in these Appendices. These are not, however, totally consistent with those used in the main
text.

Appendix A (modified Goland and Reissner's solution)
Goland and Reissner's paper (1944) can be modified to account for the effect ofan adhesive layer by rewriting

their eqn (7) as :

(A.I)

where

The differential equations for the transverse deflections of the outer adherend and the overlap become:

d'w, M,
dx~ = - D~ (A.2)

where D I and D, are the flexural rigidities of the outer adherend and the overlap:
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The dillen;ntial eljuations (A.2) can be solved and the solutions expressed as.

where

0:0;.\", :0;1

1
7
+1

1). O:O;.\,:O;c.
-~"

(A3)

/ r
I

\j f),
and

IT
II, =~D,'

The external boundary conditions. which are simple supports at the ends. and the internal boundary
conditions. in which the transversc deflections and rotation <lI1gles at the ends of the joint overlap should be
continuous and the del1ection at the anti-symmetric point zero. arc:

,v,(O) = w,(c) = 0

w,(/) = w,({))

dW I

dx,
for (AA)

The eqns (A.3) associated with the boundary conditions. eqns (A.4). can be solved and the main constant
coetlicients. A, and 13, becomc:

A, = O.

13,
11,(1+1) cosh 11,1'

2 II, sinh 1I,lcosh 11,1'+11, cosh 11,1 sinh II,C'
U\.5)

From cqn (A.3). the delleetion II I can be wrillen as:

(A.6)

The joint edge moment. !'vI" (at x, = /) can be derived from eqn (A.2) and eqn (A.6) in terms of loading.
geometric. and material parameters:

AI, = (/1'1,),

__ . T(I+lil(' 110 cosh !locsinh 11,/ ')
113,smhll,1= 7' .--- . - .

_ ,II, smh II,/cosh II,C+II, cosh !I,/5mh tI,C

Then. the joint edgc moment ean be normalized by TI:l and rewritten as a new f~lCtor. k :

\A.7)

(A.8)

If the value of tI,I is sutlieiently large to take an ,lpproximution as:

sinh tI,/.~ cosh tI,I "" ;('" /.

k is reduced to:

(H'lil( lI,eoshtl,c )'
I u. eosh tI,C+II, sinh tI," .

Appendix 13 \lhe corrected Oplinger so/lliion)
The governing equations (21.1), (21.2) and (21.3), shown in Oplinger's paper (1991) are:

for the displacement in the outer adherend

(A.9)

(A.IO)

for the displacement in the overlap

d'wu

(lX'
L/'
I::' lVu

u'
I' xx. (B.I)

d',,·
dx'

1+1,,) , 1+.'10 1 .
T ") ()!,

, _ DO'
(B.2)



Solutions to the single-lap joint

and for the resultant difference in the overlap

The equation (B.2) is, however, incorrect and should be:

Therefore, the homogeneous parts of eqns (B.3) and (BA) become:

and

2/1'
<5" _1'-<5 -2f3'E' -," - 0Th- 12 Th lt h -

which correspond to eqns (22.1) and (22.2) in Oplinger's paper.
Then, the complete solutions of eqns (B.3) and (BA) can be written as

w-~k sinh (jJ,(x-L)/t) ~ sinh [1l2(X-L)/t) t+t,,_
- 2 21 sinh (Il,A/2) +2 k22 sinh (1l2A/2) + 2 lXX,

and

<5 _ sinh (jJ,(x-L)/t) sinh (jJ,(x-L)/t)
T - ~'" sinh (Il, A/2) +~"2 sinh (Il,A/2)

Finally, the expression for k can be reduced to :

k= R,(I+~+R2C2)+8R,~R[C,(I+~)-C,J

R, +8R2~RC,+J8(l +R'C,) Th2I

Tn22 Tn'

which represents the corrected form of eqn (47) in Oplinger's paper.
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(B.3)

(BA)

(B.5)

(B.6)

(B.7)

(B.8)

(B.9)


